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Abstract The knowledge representation and reasoning of both humans and artificial

systems often involves conditionals. A conditional connects a consequence which

holds given a precondition. It can be easily recognized in natural languages with

certain key words, like ‘‘if’’ in English. A vast amount of literature in both fields, both

artificial intelligence and psychology, deals with the questions of how such condi-

tionals can be best represented and how these conditionals can model human rea-

soning. On the other hand, findings in the psychology of reasoning, such as those in the

Suppression Task, have led to a paradigm shift from the monotonicity assumptions in

human inferences towards nonmonotonic reasoning. Nonmonotonic reasoning is

sensitive for information change, that is, inferences are drawn cautiously such that

retraction of previous information is not required with the addition of new informa-

tion. While many formalisms of nonmonotonic reasoning have been proposed in the

field of Artificial Intelligence, their capability to model properties of human reasoning
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has not yet been extensively investigated. In this paper, we analyzed systematically

from both a formal and an empirical perspective the power of formal nonmonotonic

systems to model (i) possible explicit defeaters, as in the Suppression Task, and (ii)

more implicit conditional rules that trigger nonmonotonic reasoning by the keywords

in such rules. The results indicated that the classical evaluation for the correctness of

inferences has to be extended in the three major aspects (i) regarding the inference

system, (ii) the knowledge base, and (iii) possible assumed exceptions for the rule.

Keywords Defeasible reasoning � Nonmonotonic logic � Suppression task �
Cognitive modeling � Reasoning � Human reasoning � Knowledge representation �
Cognitive systems

1 Introduction: Defeasible Reasoning in an Uncertain World

In everyday life conditional statements, such as ‘‘if Lisa (a student) has an essay to

write, then she will study late in the library’’, play a central role in describing, for

instance, rules, regularities, and causal chains. A conditional consists of an

antecedent (‘‘Lisa has an essay to write’’), which acts as a precondition, and a

consequence (‘‘she will study late in the library’’) which holds in a classical logical

sense given the antecedent is satisfied. Behavioural studies have shown that human

reasoning does not, in general, follow the classical formal logical material

implication inference rules but is far more complex than that (cf. Wason 1968;

Johnson-Laird and Byrne 2002; Oaksford and Chater 2007; Klauer et al. 2007).

Humans do not always endorse the consequence despite a satisfied antecedent (also

known as the modus ponens, abbreviated ‘‘MP’’). Nor do humans always derive

from a negated consequence that the antecedent is false (also known as the modus

tollens, abbreviated ‘‘MT’’). In the following section, we briefly present the human

reasoning process for possible defeating information with the Suppression Task

(Byrne 1989).

1.1 Motivation and Behavioral Results: The Suppression Task (Byrne 1989)

Consider that a reasoner a hears that ‘‘If Lisa has an essay to write, then she will

study late in the library’’ (abbreviated as: e! l). Now, the reasoner a learns that

Lisa does have an essay to write (e). Hence, a infers (like 95% of the participants in

the Study in Byrne 1989) that ‘‘Lisa will study late in the library’’. Let us consider a

second reasoner b who, in addition to what a knows (i.e., e! l), learns the

additional conditional, ‘‘If Lisa has a textbook to read, then she will study late in the

library’’ (t! l). By learning that Lisa has an essay to write (e), b infers that Lisa

will study late in the library (again like 98% of the participants in the

aforementioned study). Another reasoner c, learns what a knows (i.e., e! l) and

the additional conditional that ‘‘If the library stays open, then Lisa will study late in

the library’’. It is more possible that reasoner c (than reasoners a and b) despite

learning that ‘‘Lisa has an essay to write’’, c does not endorse the conclusion that

‘‘Lisa will study late in the library’’ (nor did 62% of the participants in the Study in
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Byrne 1989). Human reasoning process is sensitive to new information as inferences

that would have been drawn before are not drawn now or only cautiously. This is a

feature of nonmonotonic reasoning, allowing the retraction of previously valid

inferences with newly gained information (Byrne 1989; Da Silva Neves et al. 2002).

Classical logical reasoning (such as propositional logic) is monotonic, i.e., new

information cannot lead to the retraction of previous inferences. We will briefly

outline how the above mentioned finding can be modeled in major AI approaches to

nonmonotonic reasoning in the next section.

1.2 Modeling the Suppression Task

The first cognitive model for the Suppression Task has been proposed by Byrne

(1989). She suggested to model the difference between the b- and c-cases by the

difference in the understanding of the conditional (Byrne 1991; Byrne et al. 1999).

The premises in logical formulation of the former case can be represented by

ðe _ tÞ ! l (‘‘If Lisa has an essay to write or a textbook to read, then she will study

late in the library’’); while for the c-case, it can be represented by the formula

ðe ^ oÞ ! l (‘‘If she has an essay to write and the library is open, Lisa will study late

in the library’’). These two different formulations can lead to two different mental

models. For the former case, application of modus ponens to derive l is allowed

when e is given. However, in the latter, both e and o have to be given for the

endorsement of l. In other words, the actual reasoning process depends on the

underlying mental representations that are built from different logical representa-

tions/formulations of the integrated premise information.

Classical propositional logic (with the satisfaction relation �) cannot model this

observation. From e � l and e, l can be derived regardless of an additional

information, namely t � l or o � l. An idea which is in-between a formal and a

cognitive model approach was proposed by Stenning and Lambalgen (2008). It was

based on the idea to formulate, infinitive form re-represent a classical conditional as

a ‘‘license for implication’’ and formulated the conditional as l e ^ : ab (‘‘Lisa

will study late in the library if she has an essay to write and the situation is not

abnormal.’’). That means an abnormality predicates (ab) is inserted/introduced in

the antecedent, to capture the exception. Additionally, a third truth value u (for

unknown) is introduced besides the two classical values of > (for true) and ? (for

false). By applying the Weak Completion Semantics (see below), a minimal model

is built. The models for the b and c cases above are not the same (e.g., Stenning and

Lambalgen 2008; Dietz et al. 2012).

Recently a dispute about the expressive power of logic programs to explain

human conditional reasoning has arisen (e.g., Oaksford and Chater 2016). With a

formally inspired reasoning system, such as logic programming, one is able to

reproduce the effects of the Suppression Task. However, there are many more

formal systems in knowledge representation and reasoning (Antoniou 1997) which

can deal with nonmonotonic reasoning, and some of them might intuitively be

closer to human reasoning than others. A first comparison of the theories for the

modus ponens (Ragni et al. 2016) has already shown that not all nonmonotonic

systems are suitable for modeling human reasoning. Although some researchers
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have considered System P as the cognitive counterpart of human nonmonotonic

reasoning (e.g., Bonnefon et al. 2006; Pfeifer and Kleiter 2005), it is not suitable for

simulating human inferences for the Suppression Task (Ragni et al. 2016). In fact, it

is even possible to prove that no suppression effect is possible in System P at all.

Furthermore, only some of the outputs produced by System P are drawn by the

majority of human reasoners, if several rules of System P are tested independently

(Kuhnmünch and Ragni 2014). It is important to note that not only is the choice of

the inference mechanisms relevant, but also the representation of the information.

1.3 Knowledge Representation, Conditionals, and Nonmonotonic
Inferences

Strict and defeasible knowledge

Our first distinction is made regarding the type of knowledge. Nonmonotonic

reasoning is reasoning about possible exceptions. Hence, we introduce the notion of

strict knowledge, i.e., exceptions are not allowed, neither implicit nor explicit. We

refer to any knowledge that allows for exceptions as defeasible knowledge. In the

latter case, pieces of information can be considered as supporters or defeaters for

the respective defeasible knowledge. We call the process of transforming strict

knowledge to defeasible knowledge weakening. The strict and defeasible knowledge

known to the reasoner is represented as the reasoner’s knowledge base.

Conditionals and their representation

For some researchers, nonomotonicity in human reasoning, such as in the

Suppression Task, has led to a so-called paradigm shift towards a probabilistic

understanding of conditionals (Oaksford and Chater 2007). Proponents of such

theories consider that a conditional, ‘‘if / then w’’, is best represented by a

conditional probability, Pðw j /Þ. A study has demonstrated that the role of the

relation between antecedent and consequence cannot be underestimated (Skov-

gaard-Olsen et al. 2016). A remaining problem is that most probabilistic accounts

are not processing models, but they model the pattern of the answer distribution of

the answer patterns instead. Probabilistic representation is not the only way in which

such conditionals can be represented. For example, nonmonotonic systems are used

in AI, especially in the area of knowledge representation and reasoning. A rational

agent often has to be able to apply commonsense reasoning in order to reason with

defaults (Reiter 1980; Beierle and Kern-Isberner 2014). Default reasoning already

assumes that possible defeaters may exist. Hence, systems like Reiter default logic

(Reiter 1980) deal with inferences based on assertions employing typicality

knowledge, e.g., ‘‘birds typically fly’’. Commonsense reasoning plays an important

role in formal argumentation systems, too (cf. Dung 1995; Garcı́a and Simari 2004).

The Suppression Task demonstrates that additional information can inhibit

reasoners from drawing a classical MP or MT inference, by drawing reasoner’s

attention to possible defeaters for the conditional, for example, the necessary

condition that a library is open so that Lisa can study late there. What is indirectly

hidden is that participants may shift their processing of a classical conditional in the

strict sense to a conditional that represents exceptions. An example of how
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defeasibility can be introduced by the insertion of keywords such as ‘‘normally’’ is

presented in Table 1. An intuitive prediction is that a reasoner should be more

cautious in the case of weakened conditions, i.e., in the cases where defeaters are

known or triggered by keywords that may hint at possible exceptions. Politzer

(2005), for instance, investigated how human inferences change if they receive the

classical premises but with a preceding sentence like: ‘‘it is not certain that ...?’’. He

showed that this insertion of defeasible knowledge (uncertainty) can trigger

comparable responses to the classical Suppression Task. The wording ‘‘not certain’’

does allow for a whole range of possible interpretations. In this study, we investigate

how the insertion of a nonmonotonic keyword such as ‘‘normally’’ in conditionals

can trigger defeasible reasoning. This article aims to compare de-facto standards in

the field of nonmonotonic logics, for concrete problems, such as the Suppression

Task (with explicit defeaters), and problems with weakening of the conditionals or/

and facts with keywords (as implicit defeaters). We further tested the open question

how well they can mimic specifics of human inferences.

Inference operator

We follow the idea of Gabbay (1985) and Makinson (1994) who argued to ‘‘bring

some order into a rather chaotic field by considering the output of nonmonotononic

systems’’. But in order to model the inferences we have to consider properties of the

inference relation, j� , used by human reasoners. An inference is said to be based on

a reasoning system W that allows to decide whether a propositional formula w can

be nonmonotonically derived from a propositional formula / in the context of W,

written as /j�Ww. And following (Makinson 1994), an inference operation Cð�Þ
defines the set of derivatives from a formula / such that w 2 CWð/Þ if and only if

/j�Ww, i.e., CWð/Þ ¼ fw j /j�Wwg. These reasoning systems W will be specified

in later sections. The connection between the premise and the conclusion of a

conditional ðw j /Þ that is accepted in W holds, if and only if / can be

nonmonotonically derived from w by the system W, formally /j�Ww. We formally

define this connection and inference with the concrete semantics in Sect. 3.

Table 1 Introducing defeasibility in a modus ponens like inference scheme by using the keyword

‘‘normally’’

Type/

premise

Classical cond Cond weakening Fact weakening Cond fact weakening

Premise

I

If Lisa has an essay

to write, then she

will study late in

the library

If Lisa has an essay to

write, then she will

normally study late

in the library

If Lisa has an essay

to write, then she

will study late in

the library

If Lisa has an essay to

write, then she will

normally study late

in the library

Premise

II

Lisa will study late

in the library

Lisa will study late in

the library

Normally, Lisa will

study late in the

library

Normally, Lisa will

study late in the

library

Question Does Lisa have an

essay to finish?

Does Lisa have an

essay to finish?

Does Lisa have an

essay to finish?

Does Lisa have an

essay to finish?
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1.4 Research Questions

We briefly outline the research questions which arose during our previous

discussion of the Suppression Task and the task of reasoning in a world with

potential defeaters. This requires a thorough formal analysis and an empirical

benchmarking for the two logically sound inference schemes modus ponens and

modus tollens, on which we will focus in the following research questions:

RQ1: Can formal and de-facto standard nonmonotonic inference systems mimic

the patterns we identified in human defeasible reasoning?

RQ2: What background information has to be additionally contained on the

knowledge side (i.e., to be in the knowledge base) so that formal

nonmonotonic inference systems show similar patterns?

RQ3: Are there differences between the systems for the two different forms of

defeasible reasoning: (i) by introducing defeaters explicitly or (ii) by

hinting implicitly at the existence of defeaters (i.e., insertion of the

keyword ‘‘normally’’ in this study)?

The remainder of the paper is structured as follows: In Sect. 2 we briefly

introduce propositional logic, conditionals, and various knowledge bases with an

application of the aforementioned defeasible conditionals. Section 3 explains the de-

facto standards in the field of nonmonotonic reasoning that are classified and tested

with respect to their predictions. Section 4 applies theses approaches to the

Suppression Task, which is implemented in different ways to show how differences

in knowledge bases (strict or defeasible) may lead to different inferences by the

systems. This section also summarizes findings in Ragni et al. (2016) and extends

them by implementations of the MT case of the Suppression Task. Having

demonstrated how formal differences in the implementation of the knowledge can

lead to the differences in the inferences drawn, in Sect. 5, we systematically vary the

strictness of belief, from strict knowledge without exceptions up to a knowledge

base in which exceptions are allowed in both the rules and facts. In Sect. 6, we

present three experiments to test the systems’ predictions and human inferences

with defeasible and strict knowledge. Finally, the predictions made by different

systems are evaluated by multinomial process trees. We conclude the article with a

summary and a general discussion in Sect. 7.

2 Preliminaries: Propositional Logic, Conditionals, and Knowledge
Bases

Propositional logic is defined based on a set of variables, R ¼ fV1; . . .;Vmg, called

the alphabet of the propositional language. The domain of a propositional atom

Vi 2 R is domðViÞ¼ vi; vif g, meaning that every atom may appear in positive (vi) or

negative (vi) form. A literal denotes a positive or negative form of a propositional

atom. The set of formulas, that is, the language L over R, can be defined recursively

by use of the conjunction ^ (meaning the logical and), disjunction _ (the logical or)
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and negation : as usual. We use the symbols ) (material implication) and ,
(equivalence), > (tautology) and ? (contradiction) with their usual semantics in this

article. To improve readability, we omit the ^ operator and indicate negation by

overlining. A propositional interpretation of R is a function I that assigns to each

Vi 2 R a truth value, formally I : R! true; falsef g. To determine the truth value of

a propositional formula / given an interpretation I (s/tI), the recursive definition of

the language is used. A possible world (Kripke 1972; Lewis 1986) is a propositional

interpretation over L. It is syntactically represented by a complete conjunction of

literals where every variable Vi 2 R appears exactly once only. The set of all

possible worlds of R, that is, the set of worlds which are not ruled out by additional

logical constraints, is called X. A model of a propositional formula / 2 L is a

possible world x that satisfies /, written as x � /. The set Modð/Þ ¼ fxjx � /g
is the set of all worlds under which / is evaluated to true (that is, s/tx ¼ true). We

overload � to act as relation between formulas /;w 2 L such that / � w if and

only if Modð/Þ � ModðwÞ.
For two formulas /;w 2 L, a conditional ðwj/Þ represents the defeasible rule ‘‘If

/, then normally w’’. A conditional is a trivalent logical entity that can be verified,

falsified, or not applicable in a possible world x 2 X:

sðwj/Þtx ¼
true iff x � /w ðverificationÞ
false iff x � /w ðfalsificationÞ

undefined iff x � / ðnon� applicabilityÞ

8
><

>:

This trivalent evaluation of conditionals goes back to de Finetti (1974) and has

been shown to be used in human reasoning (Wason 1968), instead of the evaluation

of the material implication. Hence, this evaluation scheme is called a defective

(Wason 1968) or deFinetti truth table (Baratgin et al. 2014). Note that this

evaluation of conditionals deviates from the evaluation of the material conditional

only in those cases where the premise is falsified, otherwise, it is identical to the

evaluation of the material conditional, as is shown in Table 2.

Definition 1 (Knowledge Base for Defeasible Reasoning) A knowledge base R ¼
ðS;DÞ is a pair consisting of a set of propositional formulas S � L and a set of

conditionals D � ðLjLÞ. The propositional formulas encode strict knowledge, i.e.,

strict facts and formulas that are always true in the scenario described by the

knowledge base.

Table 2 Comparison of the evaluations of the material conditional, the biconditional, and the conditional

s/tx swtx s/) wtx s/, wtx sðwj/Þtx

true true true true true

true false false false false

false true true false undefined

false false true true undefined

The s � tx represents the evaluation of the respective formula given a world x
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The set of strict formulas S reduce the set of worlds to a set of possible worlds

XðRÞ � X such that x 2 XðRÞ if and only if x �
V

/2S /. The conditional

knowledge D describes defeasible connections between formulas which are

normally true, i.e., their verification is more plausible than their falsification. To

give appropriate semantics to conditionals, they are normally considered within

richer structures, such as epistemic states in the sense of Halpern (2005), as are, for

instance, ranking functions (Spohn 2012), possibility distributions (Dubois and

Prade 2015), and probability distributions.

Besides strict knowledge, epistemic states also allow the representation of

preferences, beliefs, and assumptions of an intelligent agent. Basically, an epistemic

state allows one to compare formulas or worlds with respect to plausibility (or

possibility, necessity and probability). This can be realized by preferential structures

(see Sect. 3.4) like Ordinal Conditional Functions (Spohn 1988, 2012), which rank a

world that falsifies a conditional ðwj/Þ 2 D to be less plausible than a world which,

ceteris paribus, verifies or does not falsify this conditional. We illustrate these

preliminaries with the following example that is inspired by the Suppression Task

(Byrne 1989). This example will be used as a running example throughout the

paper.

Example 1 We formalize the facts ‘‘she has an essay to write’’ (e), ‘‘she will not

study late in the library’’ (l) and the rule ‘‘if she has an essay to write, she will study

late in the library’’ as strict and defeasible knowledge, respectively, which gives us

the knowledge bases in Table 3. The sets of worlds that are possible for the different

MP knowledge bases are given as follows.

XðRMP
CC Þ ¼ felg

XðRMP
CWÞ ¼ fel; elg

XðRMP
FWÞ ¼ fel; el; elg

XðRMP
CFWÞ ¼ fel; el; el; elg:

A set of conditionals D ¼ ðw1j/1Þ; . . .; ðwnj/nÞf g tolerates a conditional ðwj/Þ
iff there is a possible world that verifies ðwj/Þ and does not falsify any conditional

in D, i.e., there is an x 2 X such that x � /w ^
Vn

i¼1ð/i ) wiÞ. A knowledge base

R ¼ ðS;DÞ is consistent if and only if S is satisfiable and there is an ordered

Table 3 Knowledge bases (R ¼ ðS;DÞ with strict (S) and defeasible knowledge (D) in accordance with

Definition 1) that formalize the inference schemes given in Table 1 (see Example 1)

Modus ponens Modus tollens

Classical conditional RMP
CC ¼ ðfe) l; eg; ;Þ RMT

CC ¼ ðfe) l; lg; ;Þ
Conditional weakening RMP

CW ¼ ðfeg; fðljeÞgÞ RMT
CW ¼ ðf:lg; fðljeÞgÞ

Fact weakening RMP
FW ¼ ðfe) lg; fðej>ÞgÞ RMT

FW ¼ ðfe) lg; fðlj>ÞgÞ
Conditional and fact weakening RMP

CFW ¼ ð;; ffðljeÞ; ðej>ÞggÞ RMT
CFW ¼ ð;; ffðljeÞ; ðlj>ÞggÞ
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partition ðD0; . . .;DmÞ of D such that each conditional in a partition i is tolerated by

the union of all partitions with equal or higher order, i.e., of the set
Sm

j¼i Dj.

3 Classes of Nonmonotonic Systems and Predictions

Instead of using the material implication, in commonsense reasoning, a conditional

assertion commonly represents a notion of plausibility (Makinson 1994). The

classical consequence relation � with e � l defines: if e is true, then l must be true,

since this states that every model of e is a model of l according to the definition of �
in Sect. 2. In contrast, the nonmonotonic inference relation (Kraus et al. 1990) uses

j� P
, where ej� P

l means, if e is true, then typically l is true as well (with j� P

representing System P—see below). Applied to the Suppression Task, ej� l does not

imply e ^ oj� l. Most ‘‘systems’’ try to characterize j� by specific rules which we

will investigate in the following part.

For this comparative study or benchmark of approaches to nonmonotonic

inference we selected the well-established, tested and tried approaches of System P

(Sect. 3.1), Logic Programming (Sect. 3.2), Reiter Default Logic (Sect. 3.3) and,

preferential reasoning with ranking functions (Sect. 3.4) which are generated by the

inductive approaches of System Z or c-representations. Naturally, these approaches

differ in a syntactical level as well as in their way of computing inferences. Using

this broad set of approaches allows us to benchmark a wide area in the field of

nonmonotonic inference rather than restricting ourselves to a small, confined area.

We will present the formalisms and illustrate their workings by applying the MP

case of the Suppression Task, translated into the respective syntax, as a running

example in the respective sections. For reasons of space and possible loss of focus of

this article, we refer the reader to the cited literature for a more thorough

introduction to the approaches.

3.1 Class 1: System P

Adams’ System P (Adams 1965) is probably one of the most famous formal systems

for nonmonotonic reasoning characterizing it by six axioms listed in Table 4. A

formula w follows preferentially in System P from a formula / given a knowledge

base R ¼ ðS;DÞ (written /j� P
Rw) if and only if the extension of D with the

conditional ðwj/Þ is inconsistent (Dubois and Prade 1996; Goldszmidt and Pearl

1996). In the following section, we will show that in System P, no suppression effect

will occur in general. Here, our knowledge base consists of conditional rules like ‘‘if

she has an essay to write, she (normally) will study late in the library’’ (l|e) and we

write the minor premise ‘‘she has an essay to write’’ as a conditional ðej>Þ. For our

proof, we use the inference rules: 1. Supraclassicality (SCL) (Kraus et al. 1990), it

states that the inference relation infers nonmonotonically from a premise what can

be inferred in a classical way, 2. Deduction (DED) (Bochman 2001), it states that

an inference relation allows to infer w) v from a premise / if its conclusion can be

inferred from the conjunction of the original premise / and the implication’s
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premise w, and 3. Modus Ponens in the consequence (MPC) (Kraus et al. 1990), it

states that if both a material implication and its premise can be inferred from a

formula, the conclusion of the material implication can be inferred directly.

ðSCLÞ / � w implies /j�w

ðDEDÞ / ^ wj� v implies /j� ðw) vÞ
ðMPCÞ /j�w and /j� ðw) vÞ imply /j� v

All these inference rules are derivable from the axioms of System P; Fig. 1

illustrates the inference chains from the axioms to the respective properties. If a

conditional ðwj/Þ is an element of the knowledge base, then the knowledge base will

become inconsistent by adding the conditional ðwj/Þ. Hence, for each ðwj/Þ 2 D, we

have /j� P
Rw, a property known as Direct Inference (DI) (Łukasiewicz 2005). So, for

each ðwj/Þ 2 D, (DI) gives us /j� P
Rw, and from this, we obtain >j� P

Rð/) wÞ by

applying (DED). If we also have ð/j>Þ 2 D, then through (DI) and (MPC) we obtain

Table 4 Axioms of System P (see Adams 1965; Lehmann and Magidor 1992)

(REF) For all / it holds that /j�/

(CM) /j�w and /j� v imply /wj� v

(CUT) /j�w and /wj� v imply /j� v

(RW) /j�w and w � v imply /j� v

(LLE) / � w and wj� v imply /j� v

(OR) /j� v and wj� v imply ð/ _ wÞj� v

Reflexivity (REF) states that everything that is already known is inferable; Cautious Monotony (CM)

states that inferred knowledge can be added to the premises without rendering that conclusion impossible;

Cut (CUT) states that the inferences of a premise include those inferences of this premise together with

valid inferences; Right Weakening (RW) states that a nonmonotonic inference includes the classical

inferences from the conclusion; Left Logical Equivalence (LLE) states that the inferences from two

semantically equivalent premises are identical; Or (OR) states that if a conclusion can be drawn from two

premises independently, it also can be drawn from the disjunction of this premises

Kraus et al. (1990)

Makinson 
   (1994)

Bochman 
   (2001)

Kraus et al. 
    (1990)

Makinson 
   (1994)

Fig. 1 Important inference properties (white) derivable from the axioms (gray) of System P, where )
indicates an implication from the ingoing properties to the outgoing property, annotated with the
reference for the proof
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>j� P
Rw, no matter which other knowledge is present in the knowledge base. If we

have strict knowledge / 2 S, then with (SCL) and (MPC) we also obtain >j� P
R/.

Hence, System P does not demonstrate the suppression effect in general. Figure 2

graphically illustrates the steps of the proofs.

Example 2 (System P entailment) We illustrate this with the standard P entailment

as defined above. We use the knowledge base RMP
P ¼ ð;; fðljeÞ; ðljoÞ; ðej>ÞgÞ as an

example. DMP
P [ fðlj>Þg is consistent as, e.g., the world elo verifies all conditionals.

On the other hand, DMP
P [ fðlj>Þg is inconsistent since there is no world that verifies

at least one of the conditionals and accepts all the others. Therefore, we have

>j� P
RMP

P
l as well as >j6 � P

RMP
P

l, and hence ‘‘she will study late in the library’’. And

thus we do not find any suppression effect on the inferences even if information

about the necessary precondition of the library being open is present.

3.2 Class 2: Logic Programming

Logic programming is a inference system where logical rules are used to represent

(strict) rules and the knowledge base is composed of such rules. In its most basic

form, a rule is a Horn clause, that is, the conclusion (often called the ‘‘head’’in this

context) of the rule is a positive literal v with V 2 R and the premise (‘‘body’’) of the

rule is a conjunction of positive literals w1 ^ � � � ^ wm with wi 2 R for 1� i�m. A

relaxation of this system is to allow negative literals in the premise.

This language is used by Stenning and Lambalgen (2008) and Dietz et al. (2012)

to model the Suppression Task. The basic idea is that a conditional in natural

language forms a specific structure—a ‘‘license for inference’’, i.e., rules like

v w1 ^ � � � ^ wm ^ :abi, where abi is an abnormality for the rule which, if

positive, inhibits the conclusion of v. Such programs are evaluated under weak

completion semantics (Hölldobler and Kencana Ramli 2009b). The following

replacement steps are executed on the program:

1. Replace each set of clauses with identical head v by a single clause with head v

and a disjunction of all body literals of the clauses. Example:

v w1ð Þ; . . .; v wnð Þ is replaced by v w1 _ . . . _ wn.

2. Replace each occurrence of  by ,.

(a) Defeasible knowledge about φ (b) Strict knowledge about φ

Fig. 2 Inference of w from having ðwj/Þ in the knowledge base using System P rules given defeasible
(left) or strict (right) knowledge about /. a Defeasible knowledge about /. b Strict knowledge about /
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The resulting set of equivalences is the so called weak completion of the

program.1 By introducing a third truth value, there are many possibilities for

defining truth tables for the connectives (Kleene 1952; Łukasiewicz 1920; Fitting

1985). The Łukasiewicz logic has the model intersection property (Hölldobler and

Kencana Ramli 2009a), that means, the intersection of two models is also a model.

This property entails the existence of least models. In the following, we outline the

idea using three-valued Łukasiewicz Semantics (Łukasiewicz 1920). Truth values

are > (true), ? (false) and U (unknown). A three-valued interpretation I maps a

formula F to f>;?;Ug (Dietz et al. 2012). Each formula is evaluated according to

the truth tables of Łukasiewicz (Dietz et al. 2012). An interpretation is written as a

pair I ¼ hI>; I?i of disjoint sets of atoms where I> is the set of all atoms that are

mapped to > by I; while I? is the set of all atoms that are mapped to ? by I. Atoms

that are not an element of I> [ I? are mapped to U. We write IðFÞ ¼ > for a

formula F that is evaluated to be true under the interpretation I. We call M a model

of a logic program P if it is an interpretation evaluating each clause occurring in P
to be >. Weak completion semantics considers weakly completed logic programs

and reasons with respect to the least Ł-models of these programs. The least Ł-model

of a weakly completed logic program bP can be obtained by computing the least

fixed point of the following semantic operator, as explained in Stenning and van

Lambalgen (2008):

UPðhI>; I?iÞ ¼ hJ>; J?i

with

J> ¼ fA j A body 2 def ðA;PÞ and body is true under hI>; I?ig
J? ¼ fA j def ðA;PÞ 6¼ ; and body is false under hI>; I?i

for all A body 2 def ðA;PÞg

The model relation �wc for a program P is defined by P: P �wc F iff the formula

F holds in the least Ł-model of the weakly completed program bP . Another

formulation is that for all formulas F we have P �wc F if and only if for the least

model lm of the weakly completed lmwcPðFÞ ¼ > is evaluated as true.

Example 3 We illustrate logic programming with the Suppression Task in its MP

and MT cases here. Suppose we have rules ‘‘If she has an essay to write and nothing

abnormal1 happens, she will study late in the library’’ and ‘‘If the library is open

and nothing abnormal2 happens, she will study late in the library’’. The possible

abnormal situations for these cases may differ, leading to the difference between the

two cases. Furthermore, ‘‘the library not being open’’ is an abnormal1 situation

(since she cannot be in the library if it is closed) and ‘‘not having an essay to write’’

is an abnormal2 situation (since then she has no reason to stay in the library). An

additional premise, either ‘‘she has an essay to write’’ or ‘‘she does not study late in

the library’’, is added to this knowledge with respect to the task (MP or MT

1 The expression weak completion is used to denote the difference to completion processes that consider

a mapping of undefined atoms to ? (cp. Dietz et al. 2015).
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respectively) at hand. The complete implementation of the Suppression Task for

modus ponens and modus tollens in this language is:

PMP ¼

l  e ^ ab1;
l  o ^ ab2;

ab1  o;
ab2  e;
e  >

8
>>>><

>>>>:

9
>>>>=

>>>>;

;PMT ¼

l  e ^ ab1;
l  o ^ ab2;

ab1  o;
ab2  e;

l  ?

8
>>>><

>>>>:

9
>>>>=

>>>>;

ð1Þ

We apply weak completion to the two programs and obtain the equivalences

bPMP ¼

l , ðe ^ ab1Þ _ ðo ^ ab2Þ;
ab1 , o;

ab2 , e;

e , >

8
>>><

>>>:

9
>>>=

>>>;

;

bPMT ¼

l , ðe ^ ab1Þ _ ðo ^ ab2Þ;
ab1 , o;

ab2 , e;

l , ?

8
>>><

>>>:

9
>>>=

>>>;

ð2Þ

Here, the least model for PMP is ðfeg; fab2gÞ and the least model for PMT is

ð;; flgÞ. So we have neither l 2 I> nor l 2 I? in the MP case and hence no infor-

mation about ‘‘being in the library’’ is present. To conclude, we obtain that neither

the MP nor the MT inferences are drawn when implementing the Suppression Task

as logic programs.

3.3 Class 3: Reiter Default Logic

Reiter default logic (Reiter 1980) realizes the idea that often rules which we know

about the world can only be ‘‘almost always’’ true with some exceptions. For

instance, ‘‘Most birds fly’’ is a valid rule, though there are exceptions like the

penguins. Given a particular bird, we will conclude that it flies as long as we do not

have the additional information that it does not. In general, rules in Reiter default

logic can be applied ‘‘in the absence of any information to the contrary’’ (Reiter

1980). This leads to the typical structure of a default rule d ¼ preðdÞ:justðdÞ
consðdÞ . A default d

is comprised of a precondition (the formula preðdÞ), a set of justifications justðdÞ
and a set of consequences consðdÞ. A set of default rules D ¼ fd1; d2; . . .; dng
together with a classical logical background theory W form a Reiter default theory

ðW;DÞ.
The consequences of a default can be inferred if the precondition is satisfied and

the justifications can be assumed to be consistent. Formally, a default d is applicable

to a deductively closed set CnðAÞ if and only if preðdÞ 2 CnðAÞ and :B 62 CnðAÞ for

every B 2 justðdÞ.
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A finite sequence of defaults ðdP1
; . . .; dPm

Þ; dPi
2 D for all 1� i�m is called a

(default) process P (Antoniou 1997) with the two sets InðPÞ ¼ CnðW [
fconsðdÞjd 2 PgÞ and OutðPÞ ¼ f:AjA 2 justðdÞ; d 2 Pg if and only if each

default d is applicable to the In-set of the previous defaults. A process is successful

if and only if InðPÞ \ OutðPÞ ¼ ; and closed if and only if every d 2 D that is

applicable to InðPÞ is an element of P. The set E is called an extension if and only

if there exists a successful and closed process P with E ¼ InðPÞ. A formula w
follows with Reiter default logic from a set of formulasW given a set of defaults D
(writtenWj� Reiter

D w), if and only if w 2
T
E with E the set of all extensions E of the

Reiter default theory ðW;DÞ.

Example 4 (Reiter) Consider the Reiter default theory ðWMP;DPÞ with DP ¼

d1 : e::ab1

l
; d2 : o::ab2

l
; d3 : :o:ab1

ab1
; d4 : :e:ab2

ab2

n o
andWMP ¼ feg, that is obtained from

transforming the rules of the logic program for modus ponens in (1) into Reiter

defaults. Figure 3 shows the process tree for this theory. It can be seen that there is

only one extension, Cnðfe; lgÞ, and since l 2 Cnðfe; lgÞ, we can infer that ‘‘she will

study late in the library’’, formally ej� Reiter
DP

l.

3.4 Class 4: Ranking Models

Reasoning with Ordinal Conditional Functions (OCF, ranking functions Spohn

1988, 2012) is preferential reasoning (see Makinson 1994) with a preference

relation induced by the plausibility ranking from an OCF j. An OCF j is a function

which assigns to each world x 2 X a degree of implausibility j : X! N0 [ f1g
such that there are maximally plausible worlds, that is, worlds with a rank of 0, and

thus j�1ð0Þ 6¼ ;. This ranking function then induces the preference relation of a

preferential model ðX;�;\jÞ (Makinson 1994) so that x\jx0 if and only if

jðxÞ\jðx0Þ. We define the rank of a formula / 2 L to be the rank of the most

plausible world that satisfies /, formally jð/Þ ¼ minfjðxÞ j x � /g. and the rank

of a conditional to be the rank of the verification of the conditional normalized by

the rank of the premise, formally jðwj/Þ ¼ jð/wÞ � jð/Þ.
This directly gives us that inferring preferentially with a preference relation

induced by an OCF is an open world inference: Let R0 ¼ fU1; . . .;Ukg � R be a set

of variables and let o and o0 be conjunctions of instantiations of variables of R0.

Fig. 3 The process tree visualizing the Reiter default processes for Example 4 where each vertex is
annotated with the respective sets In (below) and Out (above)
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Then, both of them can be compared with respect to their plausibility using OCF by

marginalization, i.e., by comparing the ranks of the respective formulas. We have

jðoÞ ¼ minfjðxÞjx � og (likewise for o0). By explicitly setting non-instantiated

(or unknown) variables to false, OCF can be extended to accept the closed world

assumption, if necessary.

With their plausibility ranking, OCFs give semantics to conditionals such that an

OCF j satisfies a conditional if and only if the verification of the conditional is

strictly more plausible than its falsification, formally

j � ðwj/Þ if and only if jð/wÞ\jð/wÞ:

We define the inference relation induced by an OCF in accordance with the

preferential model ðX;�;\jÞ. In other words, w can be j-inferred from / if and

only if j satisfies the conditional ðwj/Þ (see Kern-Isberner and Eichhorn 2012 for a

formal proof).

/j� jw if and only if jð/wÞ\jð/wÞ if and only if j � ðwj/Þ ð3Þ

This ranking inference is a prototypical instantiation of preferential reasoning in

the scope of System P. Additionally, skeptical inference over all R-admissible

OCFs is identical with System P inference (Goldszmidt and Pearl 1996).

An OCF j is admissible with respect to a knowledge baseR ¼ ðS;DÞ if and only

if it satisfies all conditionals in the knowledge base, that is, j � ðwj/Þ for all

ðwj/Þ 2 D. We write jR to indicate that the OCF is admissible with respect to R.

The inference relation j� jR of an OCF admissible to a knowledge base R is defined

according to (3); this inference relation describes an inference based on the

background knowledge R.

In the following part, we will present two approaches to generate OCFs that are

admissible with respect to a given knowledge base: Pearl’s System Z (1990) and

c-representations (Kern-Isberner 2001, 2004).

System Z generates the unique Pareto-minimal OCF that is admissible with respect

to the knowledge base (that is, every other admissible OCF assigns a larger rank to

at least one world x), by iteratively applying the following notion of tolerance

between conditionals and sets of conditionals to the knowledge base. A set of

conditionals D ¼ ðw1j/1Þ; . . .; ðwnj/nÞf g tolerates a conditional ðwj/Þ if and only if

there is a world x 2 X that verifies ðwj/Þ and does not falsify any conditional in D,

formally

9 x : x � /w ^
n̂

i¼1

/i ) wi

 !

:

Hereby, the conditional knowledge base is partitioned into (with respect to set

inclusion) maximal sets of mutual tolerance ðD0;D1; . . .DkÞ according to Algorithm

1. We define an auxiliary function Z : ðLjLÞ ! N as the function which assigns to

each conditional ðwj/Þ 2 D the index of the partition it is an element of.
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Formally, Zðwj/Þ ¼ j if and only if ðwj/Þ 2 Dj and Z being undefined for

conditionals which are not in the knowledge base. With this function, the ranking

function jZ
R is defined such that the rank of a world is 0 if and only if the world does

not falsify any conditional. If the world does falsify conditionals, the rank of the

world is set with respect to the maximal index of the falsified conditionals, formally

jZ
RðxÞ ¼

0 if x �
Vn

i¼1 /iwi

maxfZðwij/iÞjx � /iwig þ 1 otherwise

�

ð4Þ

Example 5 (System Z) We illustrate System Z with the knowledge base

RMP
P ¼ ð;;DMP

P ¼ fðljeÞ; ðljoÞ; ðej>ÞgÞ. During the consistency test, all conditionals

from the knowledge base are put into DMP
P;0 because the world elo verifies every

conditional in the knowledge base, hence every conditional is tolerated by DMP
P .

From the resulting ranking function, we find jZ
RMP

P

ðlÞ ¼ 0\1 ¼ jZ
RMP

P

ðlÞ, so l is

strictly more plausible than l and thus System Z infers that ‘‘she will study late in the

library’’, formally ej� jZ
R l.

c-representations Other than calculating a single OCF-model of the knowledge

base, the approach of c-representations (Kern-Isberner 2001, 2004) provides a

schema for R-admissible OCFs. Here, each conditional ðwij/iÞ 2
D ¼ ðw1j/1Þ; . . .; ðwnj/nÞf g is associated with an integer impact j�i . The rank of

a world x is determined by summing up the impacts of conditionals in D which are

falsified by x, formally

jc
RðxÞ ¼

Xn

i¼1

j�i iff x � /iwi

0 otherwise

(

¼
X

x�/iwi

j�i ; ð5Þ

Algorithm 1 An algorithm to evaluate the consistency for a given set of conditionals
Δ = {(ψ1|φ1), . . . , (ψn|φn)}. It is used to construct the partitions needed for System Z [45].

INPUT : Δ = {(ψ1|φ1), . . . , (ψn|φn)}
OUTPUT : Ordered p a r t i t i o n (Δ0, Δ1, ...Δk) i f Δ i s c o n s i s t e n t ,

NULL o t h e r w i s e

BEGIN
INT i : = 0 ;
WHILE(Δ = ∅ ) DO

Δi := {(B|A) | (B|A) ∈ Δ and Δ tolerates (B|A)} ;
IF (Δi = ∅ )
THEN

Δ :=Δ \ Δi ;
i := i +1 ;

ELSE
RETURN NULL; / / Δ is inconsistent

ENDIF
END
RETURN Δ = Δ0, Δ1, . . . , Δi ;

END
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where the impacts are chosen such that jc
R � D, which is the case if and only if

j�i [ min
x�/iwi

(
X

x � /jwj

j 6¼ i

j�j )

� min
x�/iwi

(
X

x � /jwj

j 6¼ i

j�j )

81� i� n ð6Þ

Note that since (6) is a system of inequalities, there are infinite solutions which satisfy

(6) and each solution j� ¼ ðj�1 ; . . .; j�n Þ generates a ranking function according to

(5). Mimicking System Z, we here concentrate on solutions that generate Pareto-

minimal OCFs jc
Rwith respect to (5). Thorn et al. (2015) discusses how to generate a

respective unique solution j� if this is necessary, whilst (Beierle et al. 2016) dis-

cusses how a skeptical inference relation over all solutions of (6) can be realized.

Example 6 (c-representations) To illustrate c-representations, we again use the

knowledge base RMP
P ¼ ð;;DMP

P ¼ fðljeÞ; ðljoÞ; ðej>ÞgÞ. The system of inequalities

resulting from RMP
P can be solved minimally with the values j�1 ¼ 1; j�2 ¼ 0 and

j�3 ¼ 1. For the OCF resulting from this solution, we find

jc
RMP

P

ðlÞ ¼ 0\1 ¼ jc
RMP

P

ðlÞ. Therefore, ‘‘studying late in the library’’ is strictly

more plausible than ‘‘not studying late in the library’’ and hence inference with c-

representations gives us l, or ej� jc
R l.

3.5 Modeling Background Knowledge with Conditionals

It has been shown in Ragni et al. (2016) that, when using the plain modeling RP,

neither System P nor the ranking approaches show the suppression effect, in contrast

to logic programming with weak completion semantics (Stenning and Lambalgen

2008). The programs used in Stenning and Lambalgen (2008) and Dietz et al.

(2012) encode the two cases differently. As argued in Ragni et al. (2016), for the

modus ponens, it is possible to mimic this effect of weak completion semantics with

conditional knowledge bases. We made background knowledge an explicit part of

the knowledge base and modeling the MP and MT case for the other systems.

Hence, the suppression effect can also occur—not as a consequence of a

suitable reasoning mechanism but rather due to different background knowledge

that is triggered by the additional information included in the knowledge base for

transparency.

To analyze this effect of implicit knowledge, we will consider the different

variables as being connected in the background knowledge. So apart from the plain

approach used to illustrate the systems, we will also consider that ‘‘having an essay

to write’’ and ‘‘the library being open’’ are either connected in the premise (RCP), as

a necessary condition for ‘‘studying late in the library’’ (RNC), or both of these

(RWC). Table 5 in Sect. 4 gives the formal realizations of these knowledge bases.
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4 Predictions of Formal Systems on the Suppression Task

After introducing different classes of established nonmonotonic systems, in this

section we examine the possible inferences these systems draw for the Suppression

Task. A previous analysis (Ragni et al. 2016) showed that for a plain (or ‘‘literal’’)

realization (RP), neither System P nor the ranking approaches show the desired

suppression effect of the MP inferences, in contrast to logic programming with weak

completion semantics (Stenning and Lambalgen 2008; Dietz et al. 2012).

This holds due to a different encoding of the programs (1) (see Dietz et al. 2012)

by using background knowledge. In the following, we show that by using

knowledge bases that include an encoding of additional background knowledge, a

suppression effect is possible within these approaches. Hence, there are two possible

explanation patterns: One is based on the inference mechanism and the other on the

appropriate knowledge base.

Most of the approaches described in Sect. 3 infer knowledge from a conditional

knowledge base. The knowledge bases presented in Table 5 are based on and extend

the modeling proposed in Ragni et al. (2016) especially to the extent that here we do

not only work with the MP, but also the MT case of the Suppression Task. Here, the

plain realizationRP models the conditional statements ‘‘if she has an essay to write,

she will normally study late in the library’’ and ‘‘if the library is open, she will

normally study late in the library’’ as two conditionals as it has been done for System P

and the ranking models in Sect. 3.4. In the connecting premise approachRCP, the two

premises of the statements are joined into a single premise since the second

information ‘‘if the library is open, she will study late in the library’’ leads to

considering o as an additional prerequisite for studying in the library, so this approach

uses the conditional ‘‘if she has an essay to write and the library is open, she will

normally study late in the library’’. Note that this corresponds roughly to the way

knowledge is encoded in PMP in (1). Another alternative to model this is to treat both

premises as necessary conditions for being in the library, hence the necessary

condition modeling uses the conditional ‘‘if she is in the library, she has an essay to

write and the library is open’’. Finally, going for the equivalence operation in the weak

completion semantics, we model that the premises are necessary and sufficient for

being in the library by using both conditionals from the two previous realizations for

Table 5 Realizations of the Suppression Tasks as knowledge bases for the System P and ranking

approaches

Knowledge base

Plain approach RP ¼ ð;; fk1 : ðljeÞ; k2 : ðljoÞgÞ
Connecting premise RCP ¼ ð;; fk5 : ðljeoÞgÞ
Necessary condition RNC ¼ ð;; fk6 : ðeojlÞgÞ
Weak completion RWC ¼ ð;; fk5 : ðljeoÞ; k6 : ðeojlÞgÞ

For the MP case, we extend the default knowledge base of R	 with the conditional k3 : ðej>Þ and, for the

MT case, we extend the default knowledge base of R	 with the conditional k4 : ðlj>Þ for all

	 2 fP;CP;NC;WCg
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the weak completion modeling. All these knowledge bases can be used for the MP

case of the Suppression Task by adding the conditional ðej>Þ to the conditional

knowledge base (we indicate this by the superscript MP), or, by adding the conditional

ðlj>Þ, for the MT case of the Suppression Task (indicated by the superscript MT):

RMP
	 ¼ R	 [ fðej>Þg
RMT
	 ¼ R	 [ fðlj>Þg

Class 1: System P

As already discussed, fromRMP
P System P will draw the MP inference by applying the

properties Deduction and Modus ponens in the consequence. For the same reason,

this system licenses for the MT inference from RMT
P . For all other realizations, the

knowledge bases RMP
	 [ fðlj>Þg respectively RMT

	 [ fðej>Þg are consistent, which

implies that l and e are not inferred. So adding the additional information about the

library will suppress System P inferences for modus ponens and modus tollens only if

this new information (that is, the library being open) is somehow connected to the

information already present (her being in the library if she has an essay to write).

Class 3: Reiter Default Logic
For Reiter Default Logic we used the established realization of the Suppression Task

from logic programming as plain approach DP. Furthermore we translated the other

three knowledge bases (CP;NC and WC) from the System P approach into normal

defaults, which resulted in the default setsDCP;DNC, andDWC given in Table 6. This

default knowledge is combined with the knowledgeWMP ¼ feg for the MP case and

WMT ¼ flg. We explicated the inferences for the default theory ðWMP;DPÞ in

Example 4. In the MT case no default is applicable, because l 62 preðdÞ for all di 2 DP.

Therefore, the only extension is CnðWMTÞ ¼ CnðflgÞ. For all other default sets there is

no default applicable neither in the MP case nor in the MT case. In the MP case, we

have feg but need e ^ o to apply the default d5 and in the MT case, we have flg but d6

needs l. So, we have the extensions CnðWMPÞ ¼ CnðfegÞ and CnðWMTÞ ¼ CnðflgÞ for

the knowledge bases CP;NC, and WC.

Table 6 Realizations of the Suppression Task in Reiter default logic

Reiter default logic

Plain approach DP ¼ d1 :
e : :ab1

l
; d2 :

o : :ab2

l
; d3 :

:o : ab1

ab1

; d4 :
:e : ab2

ab2

� �

Connecting premise DCP ¼ d5 :
eo : l

l

� �

Necessary condition DNC ¼ d6 :
l : eo

eo

� �

Weak completion DWC ¼ d5 :
eo : l

l
; d6 :

l : eo

eo

� �

For the MP case, we assume WMP ¼ feg and for the MT case, we assume WMT ¼ flg
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Class 4: Ranking Models

For the four knowledge bases, System Z and c-representations show the same

behavior as System P both in the MP and MT case, so we obtain that the strong

connection of the additional information suppresses the inference for these strictly

stronger systems as well: Examples 5 and 6, with the complete ranking functions

given in Table 7, give the explicit calculations for the knowledge bases RMP
P and

RMT
P for these approaches. For CP;NC, and WC the ranking functions inductively

generated by System Z and c-representations are listed in Table 8. From this

table we obtain that we have j
cRMP
	
ðlÞ ¼ 0 ¼ j
cRMP

	
ðlÞ in the MP case and j
cRMP

	
ðeÞ ¼

0 ¼ j
cRMP
	
ðeÞ for the MT case for all 
 2 fc; Zg and all 	 2 fCP;NC;WCg (cp.

Table 5), and thus we have a suppression effect.

Overview of each system’s prediction

Table 9 summarizes the inferences that can be drawn from the different knowledge

bases using the presented approaches.

Table 7 Ranking functions generated with System Z and c-representations forRMP
P in Examples 5 and 6

x elo elo elo elo elo elo elo elo

jZ
RMP

P

ðxÞ 0 0 1 1 1 1 1 1

jc
RMP

P

ðxÞ 0 0 1 1 1 1 1 1

Table 8 Ranking functions generated with System Z and c-representations for the different knowledge

bases with different forms of strict or defeasible knowledge CP;NC, and WC (cp. Table 5)

x elo elo elo elo elo elo elo elo

jZ
RMP

CP

ðxÞ 0 0 1 0 1 1 1 1

jc
RMP

CP

ðxÞ 0 0 1 0 1 1 1 1

jZ
RMT

CP

ðxÞ 1 1 2 0 1 1 0 0

jc
RMT

CP

ðxÞ 1 1 2 0 1 1 0 0

jZ
RMP

NC

ðxÞ 0 1 0 0 1 1 1 1

jc
RMP

NC

ðxÞ 0 1 0 0 2 2 1 1

jZ
RMT

NC

ðxÞ 1 1 2 0 1 1 0 0

jc
RMT

NC

ðxÞ 1 1 2 0 1 1 0 0

jZ
RMP

WC

ðxÞ 0 1 1 0 1 1 1 1

jc
RMP

WC

ðxÞ 0 1 1 0 2 2 1 1

jZ
RMT

WC

ðxÞ 1 2 2 0 2 2 0 0

jc
RMT

WC

ðxÞ 1 2 2 0 2 2 0 0
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5 Predictions of the Formal Systems When Weakening Strict
Knowledge into Defeasible Knowledge

In the previous section, a potential defeater for inference using modus ponens or modus

tollens in the form of the additional statement ‘‘if the library is open, she will study late

in the library’’, that is, an additional prerequisite for ‘‘her being in the library’’, has been

added explicitly to the conditional knowledge base. Nonetheless, even if such a

defeater is not added explicitly, the potential existence of exceptions for the rules in the

knowledge base might weaken the MP or MT inference. In this section we examine the

systematical weakening of knowledge in the knowledge base. We start with purely

strict knowledge of a rule and a fact and examine, whether, and if, how the inferences

change either from a strict fact to a defeasible fact, or from a strict rule to a defeasible

rule, or both. Table 10 (leftmost column) lists these variations for the MP and MT

cases, with a listing of the possible worlds for these knowledge bases (next four

columns). We examine these variations of knowledge for the systems presented in Sect.

3 and classical propositional logic. The inferences drawn by the systems under the

given variation to be compared to the inferences human reasoners draw given the same

variations, the following section reports the experiments to determine these inferences.

Class 0: Propositional Logic

Propositional logic cannot express defeasible knowledge, which was the reason for

looking into approaches of nonmonotonic reasoning, in the first place. For RMP
CC and

RMT
CC , propositional logic will license for the classical inferences l for modus ponens

and e for modus tollens, since these are the classical inferences. For all other cases,

this approach is not applicable.

Class 1: System P

As defined in Sect. 3.1, we can infer a formula w from a formula / from knowledge

base R iff the union of R with the conditional ðwj/Þ is inconsistent. For RMP
CC and

RMT
CC there is only one world possible, which falsifies ðlj>Þ (for the MP case) or

ðej>Þ (for the MT case). Therefore we conclude that in this case the classical

Table 9 Inferences drawn from the formal systems for the knowledge bases of the Suppression Task

System Realization

Plain Connecting premise Necessary condition Weak completion

MP MT MP MT MP MT MP MT

Reiter default logic ns s s s s s s s

System P ns ns s s s s s s

System Z ns ns s s s s s s

c-Representations ns ns s s s s s s

Here, ns indicates that the system draws the conclusion according to the formal rule (modus ponens or

modus tollens) and does not show the suppression effect and s indicates that this inference cannot be

drawn, that is, the suppression effect occurs. The definitions for the different knowledge bases can be

found in Tables 5 and 6
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inference is drawn. In the case RMT
CW , the only worlds possible falsify the weakened

conditional, therefore the knowledge base is inconsistent. This means that every

extension of the knowledge base is inconsistent, also. Therefore we can infer e, as

expected for modus tollens, but also e, which is inconsistent to the prior inference.

For all other cases, System P licenses for the designated conclusions, that is, l for

modus ponens and e for modus tollens.

Class 2: Logic Programming

We implemented the different weakenings of the conditionals in logic program-

ming. In the following we test the predictions of the weak completion semantics for

the MP and MT cases. Within this approach a natural language conditional ‘‘if e

then l’’ is best represented by a logical formula of the form l e ^ :ab. How can

we apply this idea to the following 4 cases RMP
CC ;RMP

CW ;RMP
CW , and RMP

CW ? Everything

depends on the representation of the conditionals. A conditional ‘‘if e then normally

l’’ can be represented by the same form like before l e ^ :ab1. For normally e,

we have e :ab2. For none of these cases something abnormal is known, by the

closed world assumption, we can assume that ab1; ab2  ?. Based on these

deliberations, we construct the programs given in Table 11.

So for the given programs, the weak completion semantics always licenses for

the modus ponens resp. modus tollens inference. However, the programs are smaller

for RMP
CC ;RMP

CW than RMP
FW and RMP

CFW and less operations are necessary during the

weak completion procedure. This allows for a prediction of which inference is, from

a pure operational perspective, drawn with less effort.

RMP
CC ¼ RMP

CW [RMP
FW ¼ RMP

CFW

For all of the knowledge bases we have only one model. For all MP cases, this

model licenses for the MP inference, that is, ‘‘she will study late in the library’’, and

‘‘she does not have an essay to write’’ in all MT cases.

Table 10 From left to right: knowledge bases varied between purely strict and purely conditional

knowledge, possible worlds for these knowledge bases, the variable of interest for either the MP or MT

case, the plausibility of the respective literals in the ranking approaches and the result of the inference in

the ranking approaches

Knowledge base Possible worlds Variable Plausibility of Literals Result
el el el el of interest

RMP
CC = ({e ⇒ l, e}, ∅) L κ(l) = 0 κ(l) = ∞ l

RMP
CW = ({e}, {(l|e)}) L κ(l) = 0 κ(l) = 1 l

RMP
FW = ({e ⇒ l}, {(e )}) L κ(l) = 0 κ(l) = 1 l

RMP
CFW = (∅, {(l|e), (e )}) L κ(l) = 0 κ(l) = 1 l

RMT
CC = ({e ⇒ l, l}, ∅) E κ(e) = ∞ κ(e) = 0 e

RMT
CW = ({l}, {(l|e)}) E

RMT
FW = ({e ⇒ l}, {(l )}) E κ(e) = 1 κ(e) = 0 e

RMT
CFW = (∅, {(l|e), (l )) E κ(e) = 1 κ(e) = 0 e

Worlds that are possible in the respective realizations are denoted with ; worlds shaded gray are worlds

that contradict the designated MP/MT inference. Since RMT
CW is inconsistent, there is neither a c-repre-

sentation nor a System Z OCF, hence neither an inference possible
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Class 3: Reiter Default Logic

Applying Reiter Default Logic to the respective realizations of the weakening cases

given in Table 12 we obtain that for each knowledge base we have exactly one

extension. In each of the MP cases, this extensions includes l, so Reiter default logic

licenses for the MP inference for each of the different weakened cases. In the CC

case there is no default in DMP
CC and therefore we have CnðWMP

CC Þ ¼ Cnðfe)
l; egÞ ¼ Cnðfe; lgÞ as the only extension. For all other cases the defaults are

applicable and the extension is Cnðfe; lgÞ. See Fig. 4 for an example of a process

tree of these different cases. In the MT cases, there is no default in DMT
CC and

therefore we have the extension CnðWMT
CC Þ ¼ Cnðfe) l; lgÞ ¼ Cnðfe; lgÞ. In the

FW case the default is applicable, so that l is put into the set In and we have the

same extension as before. So we can infer e in the CC and FW cases. In the other

two cases the default is not applicable and we get the extension CnðlÞ. So we cannot

infer e in the CW and CFW cases, that is, whenever we weaken the conditional ‘‘if

she has an essay to write, she will study late in the library’’ we lose the possibility of

inferring using modus tollens, whereas in cases where none or only the fact is

weakened, the MT inference is still valid in the example presented.

Table 11 Implementation of the different weakening possibilities in logic programming

Program Least-model Inference

PMP
CC ¼ fl e; e >g ðfe; lg; ;Þ l

PMP
CW ¼ fl e ^ ab1; e >; ab1  ?g ðfe; lg; fab1gÞ l

PMP
FW ¼ fl e; e ab2; ab2  ?g ðfe; lg; fab2gÞ l

PMP
CFW ¼ fl e ^ ab1; e ab2; ab1  ?; ab2  ?g ðfe; lg; fab1; ab2gÞ l

PMT
CC ¼ fl e; l ?g ð;; fe; lgÞ e

PMT
CW ¼ fl e ^ ab1; l ?; ab1  ?g ð;; fe; l; ab1gÞ e

PMT
FW ¼ fl e; l ab3; ab3  ?g ð;; fe; l; ab3gÞ e

PMT
CFW ¼ fl e ^ ab1; l ab3; ab1  ?; ab3  ?g ð;; fe; l; ab1; ab3gÞ e

Table 12 Reiter default logic realization of the classical (CC) case as well as the weakened cases where

the conditional (CW) the fact (FW) or both (CFW) premises are weakened

Modus ponens Modus tollens

CC
 

WMP
CC ¼ fe) l; eg;DMP

CC ¼ ;
!  

WMT
CC ¼ fe) l; lg;DMT

CC ¼ ;
!

CW
WMP

CW ¼ feg;DMP
CW ¼

e : ab1

l

� �� �

WMT
CW ¼ flg;DMT

CW ¼
e : ab1

l

� ���

FW
WMP

FW ¼ fe) lg;DMP
FW ¼

> : e

e

� �! 

WMT
FW ¼ fe) lg;DMT

FW ¼
> : l

l

� ���

CFW
WMP

CFW ¼ ;;DMP
CFW ¼

e : ab1

l
;
> : e

e

� �! 

WMT
CFW ¼ ;;DMT

CFW ¼
e : ab1

l
;
> : l

l

� �! 
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Class 4: Ranking Models

For ranking models we invoke the inductive approaches System Z and c-

representations on the conditional knowledge bases in Table 3 with the worlds

possible given the respective strict formulas. For each of these knowledge bases,

both approaches yield identical ranking functions. As already stated in the section

regarding System P, RMT
CW is inconsistent, therefore, Algorithm 1 cannot construct

partitions, and the system of inequalities (6) is not solvable (cf. Pearl 1990; Kern-

Isberner 2004). So we cannot infer anything from RMT
CW . Based on all other

knowledge bases, the inference for l (in the MP case) and e (in the MT case) is

possible: Here, even if there are worlds possible which are models of the inverse

(i.e., l or e), each (most) plausible (that is, preferred) world is a model of the

designated inference, as given in Table 10. In the MP case for the CC approach

there is only one possible world el. This world is most plausible and the j-value of l

is 0. There is no world that satisfy l so we have jðlÞ ¼ 1. For all other approaches

we have jðlÞ ¼ 0\ 1 ¼ jðlÞ and therefore we can infer that ‘‘she will study late in

the library’’. For the MT cases we have similar results. In the CC approach there is

only one possible world el that does not satisfy e, therefore we have jðeÞ ¼ 1.

RMT
CW is inconsistent and there is no OCF possible. In the other two approaches we

have jðeÞ ¼ 0\1 ¼ jðeÞ and hence ‘‘she has no essay to write’’.

Overview of Each System’s Prediction

Table 13 summarizes the results of the capabilities of the systems and inferences

given the weakened conditionals.

Fig. 4 The process tree visualizing the Reiter default processes for WMP
CFW ;DMP

CFW Þ
�

where each vertex is

annotated with the respective sets In (below) and Out (above)

Table 13 Each system’s prediction for the four cases CC, CW, FW, and CFW

Inference CC FW CW CFW

System MP MT MP MT MP MT MP MT

Propositional logic d d

Reiter default logic d d d d d - d -

System P d d s s s

c-Representations d d s s s

System Z d d s s s

Weak completion semantics d d d d d d d d

Please note that there are differences to the general case (e.g., Reiter does not infer MT in general cf.

Table 9). Notation: hempty celli not applicable; -: cannot be inferred; s: can be inferred (i.e., holds in all

preferred worlds/all extensions); : can be inferred and holds in most possible worlds/extensions; d: can

be inferred and holds in all worlds possible/all extensions; inconsistent
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6 Human Inferences in the Light of Defeasibility: Experiments

Human reasoning about uncertainty is connected with knowledge about the existence

of exceptions. In contrast to the interpretation of conditionals by material implication,

few conditional statements in everyday life draw such a strong connection. As

mentioned in the introduction, most previous psychological experiments have tested

problems with possible defeaters presented explicitly. In this section, we tested how

reasoners deal with the implicit activation of the knowledge about exceptions through

the insertion of keywords. An example in conditional reasoning is a structure like ‘‘if

...then normally ...’’. This does represent the idea of having a ‘‘license for inference’’

(Stenning and Lambalgen 2008), namely that a conditional such as ‘‘if e then l’’ is best

represented by l e ^ ab1, i.e., ‘‘if e and nothing abnormal1 is known then l’’, or

equivalently ‘‘if e then normally l’’. In this section, we investigate how human

reasoners reason with the insertion of the nonmonotonic keyword ‘‘normally’’.

Our hypotheses of the nonmonotonic reasoning with an implicit trigger keyword are:

H1: The MP and MT inferences are drawn more cautiously.

H2: The MP and MT inferences are drawn slower.

H3: The ‘‘may or may not’’ conclusion is drawn more often.

H4: More uncertainty is triggered by the keyword ‘‘normally’’ when it is inserted

in the premise (Table 1), which is a specific difference predicted by the

systems (see Sect. 5 and Table 10).

H5: Defeasibility in conditionals leads to more cautious inferences than

uncertainty in facts.

We briefly present the definitions for each of the four cases here:

if / then w if / then normally w

/ CC CW

Normally, / FW CFW

From these hypotheses, we derived the following order of the keyword cases with

respect to the cautiousness inferences are drawn:

CC � FW � CW � CFW

That is, we assume participants to endorse the modus ponens and modus tollens

inferences more often and faster for the CC case and decrease to the most cautious

inferences for CFW .

6.1 Experiment I: Interpretation of Nonmonotonic Keywords

Uncertainty can be triggered by different keywords such as ‘‘most’’, ‘‘normally’’,

‘‘often’’, etc. But how do participants interpret such quantifiers numerically? We

were interested in the amount of possible exceptions they may implicitly with the

presence of such keyword.
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6.1.1 Participants

Eighty-one participants (M ¼ 33:6 years, 24f) participated in an internet study on

Amazon Mechanical Turk. We took the general precautions about native speakers

of English. They were paid for their participation.

6.1.2 Design and Procedure

All participants received, in a randomized order, 14 statements consisting of one of

the nonmonotonic keywords: ‘‘all’’, ‘‘usually’’, ‘‘most’’, ‘‘the majority of’’, ‘‘few’’,

‘‘seldom’’, ‘‘normally’’, ‘‘typically’’, ‘‘often’’, ‘‘some’’, ‘‘the minority of’’, ‘‘hardly’’,

‘‘rarely’’, and ‘‘no’’. For example, for ‘‘typically’’, the statement is like ‘‘Typically,

objects of type A are also of type B’’. Then, the question ‘‘How many percent of

objects of type A are also of type B?’’ was presented. The task of the participants

was to give the lower and upper bounds for their numerical interpretation of the

respective keywords both on the scale from 0% to 100%, respectively. They could

use as much time as they wanted for the valuations.

6.1.3 Results

A summary of the valuations can be found in Fig. 5. We calculated the median of

the min- and max-values as the interval frontiers. It becomes obvious that different

keywords can trigger different ranges for the amount of exceptions. The keyword

‘‘normally’’ allows for some exceptions, but not all (no participant chose 100 as the

maximum). The range between the medians of the max- and min-values spans the

interval from 90% to 60%.

6.2 Experiment II: Defeasible Conditional Reasoning

In this experiment, we systematically varied the strictness and defeasibility for the

relations and tested the predictions in Table 10.

6.2.1 Participants

We tested 119 participants (M ¼ 38:6 years, 51f) in an internet study on Amazon

Mechanical Turk from a different sample than the two previous experiment. They

were paid for their participation. 20 participants were excluded from data analyses

due to missing responses.

6.2.2 Design and Procedure

Each participant has been randomly assigned to one of the four groups (cp. Table 1).

Participants had to respond to 16 problems in two blocks: In the first block, the first

group received the strict conditional problems (without a ‘‘normally’’), the second

group received a ‘‘normally’’ in the conditionals (i.e., RMP
CW and RMT

CW ), the third
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group received strict conditionals and a ‘‘normally’’ in the facts (i.e., RMP
FW and

RMT
FW ), and the fourth group received a ‘‘normally’’ in the conditionals and in the

facts (i.e., RMP
CFW and RMT

CFW ). Each of the four inference forms (MP, MT, DA, AC)

was presented twice with different content, hence, in Block I, each participant had to

solve eight problems. The AC and DA problems were used as fillers. After the first

block, participants of the first and fourth group received 8 problems in the fourth

(i.e., RMP
CFW and RMT

CFW ) and first case (i.e., the classical conditionals) respectively.

Participants that received problems of the second (i.e., RMP
CW and RMT

CW ) and third

case (i.e., RMP
FW and RMT

FW ) in the first block received in the second block then the

third and second case respectively.The table below shows in detail how the blocks

of different keyword cases were presented to the four groups of participants.

Group I Group II Group III Group IV

Block I CC CW FW CFW

Block II CFW FW CW CC

Fig. 5 The interpretation intervals of nonmonotonic keywords. The red and blue caps represent the
respective medians of the min- and max-values participants gave in their responses
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6.2.3 Results

The overall correctness for the classical MP (92%) and the MT (86%) were both

high and comparable to previous findings. We compared the percentages of correct

response and median response times according to the problem type and keyword

cases (8 groups). No difference could be found for the percentage of correct

responses and response times between Block I and Block II, except for the

percentage of correct responses for the MT -type of case CW (Wilcoxon-Signed-

Rank: z ¼ 2:236; p\:05).

Therefore, we aggregated the results of the two blocks in the following analysis,

except for the Jonckheere–Terpstra test. We compared all the four keyword cases

wrt. MP and MT inferences drawn. The number of MP and MT inferences can show

if our hypotheses H1 and H3 hold. The median response times are expected to show

the pattern as suggested in our hypothesis H2.

The results support our hypothesis H1 that when defeasibility is introduced in a

knowledge base, the reasoners retract from drawing MP and MT inference and our

hypothesis H3 that participants produce more the cautious ‘‘may or may not’’

conclusion with defeasibility applied in a conditional reasoning problem. However,

the results did not support our hypothesis H5, especially for the MP inferences. It

seems that participants had similar performance no matter the defeasibility is in the

fact or in the conditional (Table 14).

For the data analysis of response time, we have excluded response times of

incorrect responses, i.e., only the response times for the specific inference drawn

were included:

CC (s) FW (s) CW (s) CFW (s)

MP Median 5.81 6.70 6.23 8.34

Median absolute deviation 2.73 2.87 2.79 3.87

MT Median 7.57 8.14 6.56 8.99

Median absolute deviation 3.65 3.06 3.30 4.09

The Jonckheere–Terpstra test for Block I data showed that there was a reliable

trend of lower percentage of correct responses with more defeasibility applied in the

conditionals (from CC;CW ;FW to CFW , TJT ¼ 26,626, z ¼ 2:636; p\:01) and a

Table 14 The results of Experiment II: The rounded percentage each group of participants applied the

inference rules MP and MT

Response CC FW CW CFW

MP Correct response 92 82 67 69

‘‘May or may not’’ 8 18 31 31

MT Correct response 86 63 71 62

‘‘May or may not’’ 10 31 29 37

For the MP inferences, the differences between CC and FW to CW and CFW were significant (p\:01).

For the MT inferences the differences between CC and the other 3 groups were significant (p\:01)
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significant slower response time trend in the same order, TJT ¼ 35,956,

z ¼ 4:958; p\:01, when we aggregated the results of MP and MT inferences.

6.3 Experiment III: Stability of Nonmonotonic Inferences

In this experiment, we varied the strictness and defeasibility for the relations as in

Experiment II, however, the problems were presented in a randomized order, instead

of in a block design. The aim of this experiment was to test if there is a learning

effect in the participants after solving 8 inference problems of different forms. The

second question was whether solving a problem in a specific case can directly

influence the inference of problems in another case.

6.3.1 Participants

We received data from 73 participants (M ¼ 35:8 years, 58f) in an internet study on

Amazon Mechanical Turk from a different sample than the two previous

experiments. They were paid for their participation.

6.3.2 Design and Procedure

Each participant solved 16 conditionals with different contents, which were

randomly assigned. Participants have been randomly assigned to one of the two

groups: The first group received the four strict conditional reasoning problems (i.e.,

MP, MT, DA, and AC; without a ‘‘normally’’) and the four modified problems with

a ’’normally’’ in the conditional and in the fact (i.e., RMP
CFW and RMT

CFW ), each in two

different contents in two blocks in a randomized order. The second group received

the four problem types with a ’’normally’’ in the conditional, but without a

‘‘normally’’ in the fact (i.e., RMP
CW and RMT

CW ), and the four classical conditionals with

a ’’normally’’ in the fact (i.e., RMP
FW and RMT

FW , cp. Table 1). The DA and AC

problems were included as fillers. After the first block of the eight problems,

participants were tested with the same problem set but in a different content and

randomized order. We tested our hypotheses H1 to H3 with Group I participants and

H5 with Group II participants. In addition, by comparing the results of Block I and

Block II, we can test whether there was any learning effect for solving this kind of

problems.

6.3.3 Results

The overall percentage of correct responses for the classical MP (99%) and MT

(89%) were both high and comparable to Experiment II. We compared the

percentage of correct responses for Block I and Block II data with Wilcoxon-

Signed-Rank test regarding participant group, keyword case, and problem types, and

found no reliable difference. Therefore, we found no evidence supporting any

learning effect during the task. As in Experiment II, we aggregated the results of the

two blocks in the following data analyses. Furthermore, we compared all the four
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cases with respect to the MP and MT inferences drawn. The results are all

comparable to those of Experiment II (Table 15).

For the data analysis of response times, like Experiment II, we have included

only the response times of the specific inferences drawn only. The response time of

CC was reliably faster than those of CW and CFW (Wilcoxon-Signed-Rank: z ¼
2:158; p\:05 and z ¼ 3:349; p\:01, respectively); and that of CW was signif-

icantly faster than that of CFW (Wilcoxon-Signed-Rank: z ¼ 2:267; p\:05), for

MP inferences. While for MT-type, the response time of CW was reliably faster

than that of FW (Wilcoxon-Signed-Rank: z ¼ 1:984; p\:05).

CC (s) FW (s) CW (s) CFW (s)

MP Median 5.63 6.81 7.05 7.93

Median absolute deviation 2.09 2.71 2.94 2.91

MT Median 7.26 9.00 8.07 8.52

Median absolute deviation 2.55 5.22 2.42 2.58

Group I participants drew the MP inferences more often in the CC-case than in

the CFW-case (Wilcoxon-Signed-Rank, z ¼ 6:604; p\:01). Group II participants

made significantly more MP than MT inferences (z ¼ 3:108; p\:01). For response

times, there is a reliable difference between both the keyword case and problem type

for both Group I and Group II participants: For Group I participants, CC problems

were solved faster than CFW (z ¼ 3:190; p\:01), and MP are faster than MT

inferences (Wilcoxon-Signed-Rank: z ¼ 2:371; p\:05). Group II participants, drew

FW problems faster than CW (Wilcoxon-Signed-Rank: z ¼ 2:010; p\:05), and MP

faster than MT inferences (Wilcoxon-Signed-Rank: z ¼ 2:915; p\:01).

6.4 Theory-Evaluation

In this section, we briefly compare the results from the behavioral experiments with

the predictions of the systems. The findings from the previous experiments indicate

a similar trend between some systems (c-representations, System P, and System Z)

and the behavioral results (see Page’s trend test above).

Table 15 The results of Experiment III: the table presents the rounded percentage each group of

participants applied the respective inference rules MP or MT or chose the ‘‘may or may not’’ response

Cases CC FW CW CFW

MP Correct response 99 80 74 61

‘‘May or may not’’ 0 20 26 39

MT Correct response 89 53 64 59

‘‘May or may not’’ 7 37 31 37

For MP, the differences between CC and the other 3 cases are significant (CW: z ¼ 4:243;FW:

z ¼ 3:742;CFW: z ¼ 5:385; p\:01), with the Wilcoxon-Signed-Rank test; and the difference between

FW and CFW is significant (z ¼ 2:402; p\:05) as well. For MT, the differences between Classical and

the other keyword cases are significant (CW: z ¼ 3:053;FW: z ¼ 4:226;CFW: z ¼ 4:158, respectively,

p\:01)
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6.4.1 Do Systems Draw the Same Inferences as the Majority of Human Reasoners?

If we compare the predictions of the systems (Table 13) with the behavioral results,

it is obvious that propositional logic is not suited to explain reasoning with

uncertainty (as it provides predictions only for the case of classical conditional

inferences, i.e., only in 2/8 cases tested here). Another interesting observation is that

none of the systems, except the weak completion semantics (WCS), derive a MT

inference for CW which has been drawn by about 71% (in Experiment II) and 64%

(in Experiment III) of the participants.

6.4.2 Secondly, Can the Trend of the Data be Predicted by the Systems?

Three of the systems make ordered predictions based on the problems. The

Jonckhere-Trend test showed that the predictions of the three systems are reliable

(in the order: CC�FW [ CW �CFW) for MP inferences, TJT ¼ 6286; z ¼
3:038; p\:01 and TJT ¼ 9404; z ¼ 4:622; p\:01 for percentage of correct

responses and response time, respectively. We have excluded CW in the analyses

for MT inferences (label as MT’) as this keyword case is either inconsistent or not

applicable for most, except one, systems: TJT ¼ 3374; z ¼ 1:894; p ¼ :058 and

TJT ¼ 4468; z ¼ 2:177; p\:05 for correctness of responses and response time,

respectively. The Jonckhere-Trend test shows that the predictions of the three

system are marginally reliable for percentage of correct responses and reliable for

response times in general.

Additionally, we generated multinomial process tree-like structures (Batchelder

and Riefer 1999) based on their predictions for different reasoning systems (cp.

Table 16). The results show that Sysc� (aggregating c-representations, System P,

and System Z; as they generate the same predictions for MP and MT’) makes the

Table 16 Results of the multinomial process tree (MPT) analysis for trees implementing the different

systems predictions

G2 FIA BIC AIC

MP

Reiter default logic 29.978 27.319 59.886 39.978

Sysc� 3.354 17.569 45.224 17.354

WCS 29.978 27.319 59.886 39.978

WCSþ 3.354 16.873 51.205 19.354

MT

Reiter default logic 2.024 8.234 17.889 8.024

Sysc� 2.567 133.687 36.908 14.56

WCS 12.406 18.529 42.313 22.406

WCSþ 4.879 17.648 52.731 20.879

Sysc� represents c-representations and the Systems P and Z as they generate the same predictions. We

have excluded CW for MT inferences as only one system generates a prediction. WCSþ is the weak

completion semantics (WCS) extended with the number of operations to derive the inference. The best

results for each measure are given in bold script
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best predictions for MP based on the AIC and BIC values. However, WCSþ is the

best based on the FIA value (Singmann and Kellen 2013). For the reduced MT’

cases (without the CW-case), Reiter Default Logic makes the best predictions

according to the AIC, BIC, and FIA values. This finding is remarkable as Reiter

Default Logic in general does not allow to draw a MT inference.

If we consider additional effects, e.g., the number of operations in WCS, then the

performances of the system prediction improve as indicated in WCSþ and WCSþ is

comparable to Sysc�. However, no one has proposed such a complexity measure so

far.

7 Summary and General Discussion

Classical propositional logic and especially material implication are not suitable for

explaining the peculiarities of human conditional reasoning (Wason 1968; Klauer

et al. 2007). In addition, it is questionable if human reasoning is monotonic, i.e., the

trueness of previously drawn inferences will not be affected by the acquisition of

new knowledge. New information can lead to cautious inferences and human

reasoners do not demonstrate to have a fix form of rules they have just applied, as

shown by the context dependency of formally equivalent problems (Klauer et al.

2007). Hence, it is possible that human reasoners apply modus ponens and modus

tollens or not depends on the scenario. This is a feature that humans share with

many formal nonmonotonic inference relations (cp. Sect. 3).

Formal systems generate clear predictions which are implemented and thus

ready-to-use. They are characterized with respect to their formal and computational

properties. In this study, we have done the analyses based on de-facto standards,

such as Reiter Default Logic, System P, System Z, representations, and Logical

Programming with Weak Completion Semantics. Different nonmonotonic classes

are covered in these systems. Formal nonmonotonic systems do not license for MT

inferences as a general rule. Even more, if modus tollens would hold generally, this

would render the system to be a system of monotonic inference Kraus et al. (1990).

Our findings in the experiments support inference by preferential models, i.e., the

inference by System P and the ranking approaches, to be able to capture the

semantic difference in the Suppression Task which humans demonstrate but only if

explicit and implicit knowledge are modeled carefully and thoroughly. In these

models, / preferentially entails w if and only if w holds in the most plausible models

of /. Figure 6 illustrates how the models of the two formulas / and w can be related

to each other if /j�w is assumed. It can be seen that even if w holds in the most

plausible models of /, there are most plausible models of w which are models of /
and others which are models of /, and hence no inference with respect to the

outcome of / (and thus the application of modus tollens) is possible. However, it is

reasonable to draw the MP conclusion. That means, if the agent is in a situation

where / holds, it is most plausible that w is also true.

As a result of the investigation of the formal systems, we have shown that the

suppression effect can be modeled in all the approaches of nonmonotonic reasoning
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presented. It requires, however, different additional efforts to do so. Some

approaches require to take hidden assumptions into account, others to represent the

background knowledge explicitly and include it in the respective knowledge base.

This finding should not be interpreted in a way such that the goodness-to-fit of the

approaches depend on a skillful implementation alone. The manipulation is not for

achieving our expected results, but to sharpen our senses in the search for an

explanation of the peculiarities of the human reasoning system.

The presented systems are formal ones and deal with, and only with, the given

information in a formal way. Instances of these variables are in principle

unconnected and do not contain meaning of any type, other than the one formally

specified2. For instance, in the running example, a human reasoner might—or most

probably will—have a connection between, ‘‘being in a library’’ and ‘‘a library

being open’’ in mind, and this connection might be a more general one that, for

instance, states the general situation ‘‘one cannot be in a public institution if the

building is closed’’3 This connection is not made in most of the plain approaches

presented in Sect. 3, here, only Logical Programming connects the variables e and

o in a rules body via the equivalence induced by the Weak Completion Semantics

and the abnormality predicates.

To evaluate the predictive power of the formal nonmonotonic systems, we have

tested a modeling of the MP inference in the Suppression Task (Byrne 1989) in a

previous article Ragni et al. (2016). The work is extended in this study. Firstly, we

included predictions for the MT case as well, apart from only the MP case in the first

Fig. 6 Illustration of possible plausibility arrangement of models of formulas / and w if /j�w

2 For instance, it is without problem to introduce variables F and M to a logical system and, without

stating any conditions that these may be mutually exclusive, have states of worlds or individuals for

which, one, both, or neither of these variables are true, despite the fact that the user of the formal system

intended to encode individuals to female or male with these variables.
3 That is, ‘‘in general one cannot be...’’. One might have a key, have been (by accident or deliberately)

locked in, have broken in, etc. But in the plausible situations, this rule and thus this connection between

the variables holds.
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modeling. In the second step, we investigated what additional (or background)

information a knowledge base needs to contain, so that the systems which deviate

from human defeasible inferences in the Suppression Task, originally, show the

suppression effect. These modeling results demonstrate that human reasoners might

assume additional background knowledge implicitly or diverse understanding of the

premise information when reasoning from these premises. This needs to be

investigated in future studies. In the third step, we generated fine-grained

predictions of the different nonmonotonic systems for the nonmonotonic keyword

‘‘normally’’ (cp. Table 13). These predictions allow us to test the cognitive

adequacy of these models in the final step.

Previous empirical approaches have not analyzed the variations of these

nonmonotonic keywords systematically. While (Politzer 2005) used the meta-

statement that the following assertion is ‘‘not certain’’. We were interested in using

positive keywords that may trigger a reasoner to consider exceptions of the present

conditional implicitly, without the need to think about a specific number of

exceptions as in some other studies. Consequently, we first analyzed the

interpretation of different keywords. Among all the possible keywords we tested,

‘‘normally’’ showed a distribution with at least over 60% of the cases being

evidence for the conditional statement, but it allows for some exceptions in the

representation as well. A byproduct is that it coincides with the formulation of a

conditional with an abnormality predicate l e ^ : ab, or in other words with the

notion of ‘‘if e then normally l’’. Hence, insertion of the keyword ’’normally’’ can

admit some abnormalities.

In the second experiment, we investigated the effect of the nonmonotonic

keyword ‘‘normally’’ on drawing the modus ponens or modus tollens and if there is

any differences between its insertion in the conditional or in the fact, or in both. The

results supports several of our hypotheses. First of all, it triggered more cautious

inferences, especially when the keyword is present in the conditional. This has been

predicted by several nonmonotonic systems such as c-representations, System Z and

System P. In this sense, the rule dominates a fact in the modus ponens.

Also it strongly hints at a plausibility ordering of the possible worlds as predicted

by Spohn’s ranking functions (Spohn 2012). Such an ordering might be connected

to a preferred mental model theory (Ragni and Knauff 2013). Such ranks (and the

inductive methods to acquire them, like c-representations,) require additional

empirical investigations. Secondly, the number of ‘‘may or may not’’ responses

increased accordingly, as well as the response times. Hence, the uncertainty

manipulation showed a clear trend effect. Additionally, it seems possible to trigger

different ‘‘degrees’’ of nonmonotonicity, i.e., the more uncertainty is introduced, the

more often the reasoner retract from drawing the MP inference. Participants

received conditional reasoning problems of all the possible inferences types, i.e.,

MP, MT, DA, and AC, with the same keyword case within a block. That means, the

insertion of ‘‘normally’’ or not in the conditional or fact is identical for all the four

problems. This block design was chosen to reduce the attention the keyword might

draw. Participant may compare the problems with problem with other keyword

cases when they are presented together. Furthermore, the high number of modus

ponens (and modus tollens) inferences drawn despite the keyword ‘‘normally’’
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draws a connection to the interpretation of Experiment I—that although there could

be ‘‘abnormalities’’ these set are regularly false. Future work is required to

investigate if any additional implicit assumptions exist in the completion process

(instead of a weak completion) and the reasoning steps humans may draw.

The more the uncertainty is inserted, the less this abnormality is set to be false by

individual reasoners. This prediction on an individual level is a strength of the

logical systems in contrast to some probabilistic approaches that model the group

decisions as a whole. Nonetheless, this aspect requires future research.

The third experiment investigated a group that received CC and CFW and a

second group that received problems of keyword cases FW and CW randomly

which were not presented in two different blocks. Such an ‘‘exposition’’ to

conditionals or facts in strict and defeasible form should trigger a different behavior

if participants would make the aforementioned comparison. Our analysis, however,

showed that there were no differences from the results of Experiment II, nor

between the first or the second half of the experiment according to different

keyword cases. This indicates a form of stability in the inference process. And this

stability, namely that the same inferences are drawn across time, is a common

characteristic of formal systems. These findings show that human reasoners have not

been influenced by this repeated presentation of similar problems.

The lower frequency of drawing a MT inference than a MP inference is

consistent with other findings in the literature (Klauer et al. 2007). In both cases, the

caution to draw the respective inference increased with the introduction of a

nonmonotonic keyword like ‘‘normally’’. A difference between them is that the

order in modus ponens of CW and FW is reversed. This might be related to the

reasoning direction, being forward or backward, in a conditional inference (e.g.,

Klauer et al. 2007). In this article we focused on introduction of new information

that supports or defeats knowledge, but there can be stronger candidates, namely

disablers and enablers for conditionals. They can inhibit the application of a

possible rule in the legal context (Gazzo Castañeda and Knauff 2016). Future work

for the difference between such disablers and defeaters is required.

We put additional effort onto the question about how qualitative system

predictions can be best evaluated. Multinomial process trees (MPTs) have been

proven to be a successful method to model system predictions that incorporate some

structural information (Ragni et al. 2014). Klauer et al. (2015) showed that ordered

predictions for a task can be implemented in a MPT modeling. For our modeling

approach, we had to represent predictions between different problem classes by

MPTs. Future research is required for the potentials and limitations of MPT

modeling. For our results, however, the evaluation of the theories show a rare

congruence between all the relevant measures such as AIC, BIC, and FIA. If a

complexity measure is introduced to the Weak Completion Semantics by counting

the number of operations, then the Weak Completion Semantics reaches a similar

performance like the three systems (c-representations, System P and System Z).

While the Weak Completion Semantics focuses only on the minimal model, it

remains an open question if ranks can be introduced as well within this system.

The knowledge bases presented in Sects. 4 and 5 are canonical models with

respect to the implementation in the existing literature concerning psychological
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studies and their formal interpretation or normative predictions. Nonetheless, this

may encode the knowledge in a different way from how it was intended:

Representing (l|e) and ðej>Þ on the same level is (with exceptions) generally

valid, as elements of the (background) knowledge of the agent yield not only the

rule ‘‘if she has an essay to write, she will normally study in the library’’ but also the

rule that ‘‘(usually/most of the time/normally) she has an essay to write’’.

This may not meet the intuition. Therefore, we proposed to introduce an element

of dynamics into the discussion and argued, in the sense of Ramsey (1929), that an

inference should indeed be a (hypothetical) revision of the epistemic state of an

agent. By modeling reasoning in this way, we split up the epistemic state, which we

set based on the background knowledge, and the inference by (virtually) revising

this epistemic state with the premise of the conditional statement to be tested. And

with this approach, we distinguish between knowledge of the agent and queries that

are only relevant for the inference but have no impact on the knowledge of the

agent. Thus, the model is able to reason not only about true events but also

hypothetically or counterfactually. Usually, we do not expect her to have an essay to

write, but if she had an essay to write, then the agent could infer whether she would

be in the library or not. For this paper, we decided to keep the formal modeling as

simple and uniform as possible and stick to the static modeling because revision of

the logic programs under the Weak Completion Semantics and Reiter default logic

has hardly been ever considered. Moreover, for the ranking models, the same beliefs

would obtain in this simple example for both the static and dynamic modeling.

These findings can help as well to build better formal commonsense reasoning

systems that can take typical inferences of humans into account. And thus, such

systems will be more successful in interacting with humans. Finally, the results

showed that to distinguish between a ‘‘correct’’ and an ‘‘incorrect’’ inference in

many reasoning problems requires at least two additional information: The first

being the type of inference systems used and the second being the kind of the

elements of the knowledge base. And one extra information, probably being the

most important one, is: Do you know any exceptions to the rule? These three points

have indicate why classical logic is not sufficient to model human reasoning and

why nonmonotonic systems that take the ’’right’’ knowledge base and knowledge

about possible exceptions into account with an presupposed ordering on models are

superior to other systems.
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